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Chaos suppression in flows using proportional pulses in the system variables
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In this work a detailed analysis of a recently introduced chaos suppression method through proportional
perturbations in the system variablgd.A. Matias and J. Gemez, Phys. Rev. Lett72, 1455 (1994] is
presented. The method does not require any previous knowledge of the system dynamics and could be specially
useful for those systems, e.g., chemical or biological, for which it may be advantageous to act on the system
variables rather than on the parameters. The performance of the method is illustrated with several autonomous
and nonautonomous flows, including issues such as the possibility of stabilizing different periodic or fixed
point behaviors. Finally, a quantitative relationship among the parameters of the method is sought in terms of
the highest Lyapunov exponent of the syst¢81063-651X96)00507-7

PACS numbes): 05.45+b

I. INTRODUCTION otic behavior exhibited by many experimental systems can
be described in a low-dimensional way in terms of a few
One century after the pioneering work of Poingaezent modes. The hallmark of those dissipative systems exhibiting
years have seen the emergence of the field of nonlinear dghaos is the appearance of a fractal structure in state space,
namics(see, e.g.[1,2]) which consists in the study of far- coming from a continuous stretch and fold process, called
from-equilibrium systems, characterized by responses that detrange attractor, on which the asymptotic behavior of the
not depend linearly on the applied stimulus. Some of thesystem takes place.
phenomena that are characteristic of this field, such as low- The realization by Ott, Grebogi, and York©GY) [4]
dimensional chaos, solitons, patterns, the emergence of corthat one can apply small time-dependent perturbations to a
plexity, etc., reflect a lot of unexpected order compared tahaotic system in such a way that its behavior becomes regu-
the linear world of near-equilibrium systems, that are domi-lar and predictable may look surprising at first sight. The key
nated by the tendency towards disorder dictated by the seeemark[5] is that a strange attractor can be viewed as the
ond law of thermodynamics. Nonlinear dynamics offers aclosure, or superposition, of a very large number of unstable
common framework that is useful in a variety of different periodic orbits. Intuitively one sees that in most routes to
branches of science, ranging from fluid dynamics, meteorolehaos new periodic motions are progressively created until
ogy, photonics, to biology, economics, and social scienceshe coexistence of all of them leads to chaos. This can be
One of the most fascinating behaviors of this kind of systemstated in other words by saying that the dynamical behavior
is low-dimensional deterministic chaos, in which a systemof a chaotic system consists in a continuous switching be-
with perfectly known evolution laws exhibits sensitive de-tween many different possible periodic behaviors, none of
pendence on the initial conditions. Thus if one has two trawhich predominates. The idea of controlling chaos is pre-
jectories with initial conditions differing by some arbitrarily cisely to activate one of the underlying periodic behaviors
small amount, they will become completely uncorrelated af{see[6—8] for recent surveys
ter a certain time has passed. The consequence is a continu-This simple idea is completely changing the reputation of
ous loss of information on the dynamical behavior of thechaotic systems, because under this perspective chaos is no
system. longer a drawback, but rather an advantage. Within the con-
After the practical discovery of chaos in a set of differen-text of classical linear control theory, see, €/§], one needs
tial equations by Lorenz in 1963], scientists have initially to apply relatively large perturbations to the system in order
studied it as a curiosity, but, on the other hand, all effortsto produce large changes in the system behavior. Although
have been made to avoid the appearance of this behavior this philosophy has also been applied to nonlinear systems
practical settings. In fact, deterministic chaos may cause urj10], the OGY scheme is more efficient, in the sense that the
controlled vibrations and fatigue failure in mechanical sys-perturbations that one needs to apply to stabilize a given
tems, temperature oscillations outside safe margins, voltagerbit are in the order of a few percent, due to the fact that the
jumps in electrical systems, and, in general, malfunctioningarget periodic behavior is already present in the strange at-
and unpredictable behavior in these systems, including alsactor. Moreover, one can choose among many different pe-
chemical reactors. Despite its intrinsic complexity, the chatiodic behaviors and it is possible to switch from one to the
other, implying this fact that controlled chaotic systems are
very flexible. All this endeavor could be specially helpful to
“Present address: dica Teoica, Facultad de Ciencias, Univer- explain the behavior of many biological systems, for which
sidad de Salamanca, E-37008 Salamanca, Spain. the issues of adaptability to the environment and evolution
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may be explained if one sees them as self-regulatory nonlinerder to determine the stable and unstable manifolds, cannot
ear systems. be performed in time. Another possibility is to apply an ex-
The OGY method4,11,13 works in a discrete fashion, ternal high-frequency modulatidrd8] that stabilizes a peri-
and when applied tdN-dimensional flows consists in the odic behavior in a nonresonant way, equivalent to the shift of
definition of a suitably choserN(— 1) Poincafereturn map SOMe System parameter into a nonchaotic region.
that gives the crossings of the flow with this plane. The All the methods presented so far, possibly with the excep-
method exploits the saddle character of the unstable periodfion of Pyragas{30] method, have in common the fact that
orbits and applies the necessary perturbation to a parametiley are able to stabilize periodic behavior by acting on some
of the system in such a form that the system always sta ystem parameter. The aim of th? present contrlb_utlon s to
near the stable manifold of the periodic orbit. The perturba- ISCUSS In Some detml the properties of a recently mtroduce_d
tion to be applied to a system parameter is calculated b 9_] chaos suppression me'Fhod t_hat works through_ the a_ppll-
linearizing the flow locally around a trust ball. The method 6?“0” Of. regular perturbations n the for_m of spikes, i.e.,
has proved its versatility in a number of exotic situations,m'nUte kicks, on the system vanables: Like other nor_1feed-
such as the control of transient chdds] and the stabiliza- back methods, one of its advantages is the faczt that it dpes
tion [14] of strange attractors destroyed in a crisis]. not ne_ed a previous kr_lowledge of the system's dynamical
The OGY method has experienced a number of improvepehav'or' The fact that it acts on the system variables, rather
ments that make it suitable for its application to experimentaFhan on some parameter, makgs the pr_eseqt method specially
systems of which one only knows a time sefiés], and to attractive in the case of chemical or biological systems, for

; - : hich finding a suitable parameter might be problematic. A
the study of higher-dimensional systefd§], among others. w . :
One variant of the chaos control idea, the occasional proporq'reCt implementation of the OGY method that acts on the

; ; tem variables has also been introdujctdl.
tional feedbacKOPP method[18-20, exploits the strongly SYsS X s
dissipative nature of the flows encountered in practical appli- The method considered in the present work has already

cations, allowing us to work with a one-dimensional returnbeen appl!ed to .the case of d|SS|pat|ye ong-dmens@‘i_&l
map of the system, which makes things much simpler. Th@nd.two-d|men5|onaﬂ2D) maps(b_oth .mvert|ble' and nonin-
result is that a very large number of applications to experi—vemble) [42]. The ex?”.‘?'es StUd'eq |n'R¢.ﬂ.2] include the
mental settings exhibiting low-dimensional chaos and tha ase of systems exhibiting a quasiperiodicity route to chaos

use different approaches has appeared, ranging from a ma ), resulting from the coexistence of several periodic fre-
netoelastic ribbof21], to spin-wave instabilitieg22], a ther- uencies, and also the case of_the sy_st_ems in .Wh'Ch a strange
mosiphon[23], a diode resonatof18], a laser[24], the attractor is born or destroyed ina cri$is5]. This includes
Belousov-Zhabotinsky reactidr25], and also to heart tissue the case of the boundary crises, that happens when the

[26] and neuron$27]. These applications have enlarged theStrange attractor collides with a periodic orbit on its basin
applicability of the controlling chaos ideas to a number oftoundary, with the result that the size of the strange attractor

experimental situationgsee alsq28)]). changes suddeniyn the example studied in Rg#2] points

One of the disadvantages of the OGY method in practica] hf”‘t !|e OWS'de the attractor’s basin escape out to |nf|n|ty, ?”d
is implies that the system goes to infinity after the cyisis

applications is that it is necessary to have a quite detaile i . .
knowledge of the system under study. For example, on he method has also _been apphe_d, to the caseé in which the
perturbations are applied to a Poincaress section of the

needs tolearn details about the location of the target un-glow [43]
tabl iodic orbit. A d f potential probl ' i
Stavie periodic orol SEcond SOUTEE Of POIertial probiems =, Ty, o present work the original method for floyd9],

is the discrete nature of the method: perturbations are onl t tvpicall i | oul bet i
applied when the flow crosses the appropriate Poincar at typically applies several puises between two Crosses

plane. If the largest Lyapunov exponent of the system ié"’.ith a Ppinca’replgne, will be applied to different systems of
relatively high the applied perturbations may be insuﬁicientd'ﬁerent'al equations, both autonomous and nonautonomous.

and more refined techniques are requir2é]. An approach In addition, quantitative relationships_betvvgen the two pa-
that, in principle, overcomes the difficulty associated withfameters of the method, namely, the intensity of the pertur-

the discrete nature of the OGY method is the continuou%ations and the time interval in which they are applied, will

control technique put forward by Pyragig0]. The idea in e presented. A crucial parameter in these relationships is the

which this method is based is the synchronization of th degree Qf chaoticitpf the uncontrolled system, as measured
e‘Py the highest Lyapunov exponent.

target system with a time series produced by itself, eithe Th i : ved as foll Section Il di
periodic or aperiodic. This method has also been applied to € ptLesen .pafert|s orgafnl[ﬁe ?]S oflows. Section ;ﬁ d
some experimental settings, including electrical circ8ts| cusses the main features of thé chaos Suppression metno
and chaotic chemical reactiofid?]. used in the present work. Then, the method is applied in Sec.

A different situation is that of the so-called nonfeedback”.I to a few ordinary differential equation systems with the

methods, for which one uses no previous information abou®m of illustrating the main features and potentialities of the

the system for controlling purposes. First of all, one hasmethOd' Later, S_ec: v has.the am of exploring the f.“eth"d

those method$33—37 that apply an external modulated in a more quantitative fashion. Finally, Sec. V contains the

force on some system parameter, activating a regular beha{?a" conclusions from the present work.

ior in the system in a resonant fashion. The main usefulness

of these methods may be in the case of very fast systems, Il. METHOD

e.g., lasers, for which the natural time scale of the system is

so fast that the application of a chaos control method like The aim of the present work is to discuss the main prop-

OGY, in which some calculations have to be carried out inerties of a recently introduced chaos suppression method
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[39], namely, in the case that is applied to ordinary differen- ll. APPLICATIONS
tial equation systems yielding deterministic chaos. The

thod ks b ving instant iodic Kicks t The present section contains a series of three-variable
Method works by applying Instantaneous periodic KICKS 10, in,,0us models that exhibit deterministic chaos for some

the system \_/ariables, that amount to changes that are prOpoﬁérameter ranges. The examples have been chosen to illus-
tional to their current values, and that take the form, trate different features of the method, such as the possibility
of using both negative and positive valuesfin (1), the
stabilization of periodic orbits, but also of fixed points, and
other features. In Sec. IV a more quantitative study of some
features of the method will be presented.

Xi=Xi[1+yo(t—j7)], 1

whereX; represents theth variable of the system at a given
instant of time,y; regulates the intensity of the perturbation )
applied to theéth variable,s is Dirac’s 8 function, andj runs After studying the Lorenz attractor, Bsler was able to
over natural numbers, implying that the kicks are applied apbtain the simplest nonlinear vector field capable of generat-
intervals that are uniformly spaced by The proportional ing chaotic behaviof45] (see, however46]). This single-
per[urbations can be app“ed to all or 0n|y to some of theSCfO” strange attractor is written in the fO”OWing form:
system variables. For example, in the case of nonlinear os- . . :
cillators represented by second order differential equations, X=-X=y, y=xtay, z=b+z(x-c), @
and where one has a pair of position and momentum coordi
nates, the perturbations might be applied to only one o
them. Regarding the sign of thg, it can be either positive
or negative, as illustrated in more detail in the example

studied in the next section. accumulation point of the period doubling cascade, beyond

All the numerical integrations in this work have been per-ynich one has deterministic chaos, excepting for the pres-
formed by using a fourth-order fixed-step Runge-Kutta pro-,

he ti h h . " ~ence of a number of periodic windows. The system has an
cedure44]. The time step has been chosen to avoid spuriougsiaple fixed point near the origin whose 2D unstable mani-
behavior, being typically in the rangkt=0.001-0.01 units

: X 2 > fold presumably spans the strange attractor. It appears that
of time, unless otherwise stated. Fixing the value of the timgy,, strange attractor does not exhibit a remerging toze

step i_s quite convgnient irj the numerical work, because' theBeriod—doubling reversp[47], at least for not too large val-
the kicks are applied at fixed values of the number of inte{,a5 ofc.

gration steps, i.e., one makesjAt, Wher_ej is some natu- This system serves to illustrate the possibility of using
ral number. Otherwise, if one operates directly with time as &ither ¥<0 or y>0. At c=4.6 the system is chaotic, and
real (;{ar|able spurious behavior may be obtained due Q505 appears through a period-doubling route. Application
rou_lf‘h Ing er:orsf. h . £ th hod is th i of perturbations withy<<O stabilizes different periodic be-

e result of the operation of the method is that a differ- ;-5 that correspond to regular states of the system for

ent dynamical system.is crgated that haand 7 as param- c<4.6. Thus, Fig. (a) presents a period-2 orbit obtained by
eters(although a relationship between them can be fo“ndusing y=—0.004, that is applied to all the variables, while

;eetﬁec. 1. Dufri?hgn—l s:epbs ghe s;t/stem (re]\./lolviihfollov(\;— eriod-1 or -4 orbits can be stabilized in the same way.
Ing the recipe ot the unperturbed system, while at Ineé end Ojqper possibility is to apply perturbations on only one or

tr]le nth thp a dl(;crete cuangel takeshpla:jce. For al fixed valug, of the variables. Purely empirical evidence shows that
of 7, and depending on the value f the dynamical system o mqst effective possibility in this case is to act only on

Wi_". e>ihibi|t cherl]osbfor: IO.W ve;lur?s of4l, unti_I”ft())r a given y, and, thus, Fig. (b) presents a period-4 orbit stabilized by
lcr't'cﬁ. value the be 1avior 0 ItI e slystzm Wlh €COME regu- 5ing y,= —0.005. It appears that there is no systematic
ar, this transition being usually related to the routes towardFJ)rocedure to determina priori which variable is the most

chaos exhibited by the unperturbed dynamical system. effective for this
- o . : . : purpose, and analogous remarks for other
The stabilized periodic orbitr fixed point$ obtained by models studied in the present work are based just on numeri-

application of the method are not identical to the correspondzy| eyigence. It is possible to stabilize the system in a peri-
ing unstable periodic orbit®r fixed point3 embedded in the dic behavior by using/>0 values in the case that one is
strange attractor. Nevertheless, it has been empirically foun elow a periodic window. Thus, foc="5.0 one is near a
see, e.g9.[42(b)], that these stabilized orbitsr fixed point$ period-3 window and perturbations with>0 are able to

are close to orbitsor fixed point3 of the unperturbed dy- stabilize this behavior, as shown in FigclLfor the case of

namical system for nearby parameter values that yield regu}-/:o'ooz' The robustness of the chaos suppression method

Lﬁggghrﬁ\é;?];&hgbﬂeggﬁai Xheltzasazzn;e rerseesrg_t())lﬁr][E?OWnE tEas also been tested with similar models, namely, by consid-
Iev uppressi ugh’ ﬁng two different chemical versions of ‘Bsler's model

application of an external resonant forcing term. However, n[ 48,49
will be shown that if one fixes, then any periodicity can be T
stabilized by varyingy, implying that the method presents

some analogies to the nonresonant chaos suppression method
through fast modulation of some parameter of R&8], that The second example that we have chosen is that of the
amounts to a shift in such a parameter and that allows stabthree-variable continuous model of a bursting neuron intro-
lization of any periodic behavior. duced by Hindmarsh and Rose in 198®)]. This study rep-

A. The Rossler model

Such that it has a single nonlinear texknin z.
By fixing a and b in the valuea=b=0.2, one has a
eriod-doubling (Feigenbaum route to chaos where a
%eriod-Z orbit is created at=2.6, and beingc~4.2 the

B. The Hindmarsh-Rose model of a bursting neuron
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\ FIG. 2. Chaos suppression in the model of a bursting neuron due
Ll 0 ‘ to Hindmarsh and Ros€), and Ref.[50], where the parameters
A | take the values=1.0, b=3.0, c=1.0, s=4.0, d=5.0, r =0.008,
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Xo=— 1.6, andl =3.35[53], while the time step for integration is
At=0.02 and in(1) 7=100At=2: (a) yx=y,= ¥,=0.004 and one
has a period-3 behavioth) y,=y,=y,=—0.004 and one has a
, , , , © period-1 behavior.

2(t)0 250 300 350 400

[39] in the case of a model also exhibiting a period-doubling

FIG. 1. Chaos suppression iri §ber’s model(2) and Ref[45], reversal behavior, one may obtain periodic behavior using
by fixing the parametera=b=0.2, being the time step for the either y<<O or y>0, where in the first case the observed
integration At=0.002 and the interval between Kkicks ifi) behavior is related to the periodic behavior of the original
7=100At=0.2 in all cases(a) c=4.6 andy,=y,=v,=—0.004 system forl >3.35, while in the second case it is related to
(the system exhibits period-2 behavior(b) c¢c=4.6 and the behavior of the system fbr 3.35.
¥x=7.=0.0, y,=—0.005(the system exhibits period-4 behavior Thus Fig. 2Za) contains a stabilized period-3 orbit ob-
(©) =5.0, yx="7y=7,=0.002 (the system exhibits period-3 be- tained withy=0.004. Period-1, -2, and -4 orbits can be also
haviop. stabilized withy>0 values. In turn, Fig. () shows a sta-

L i i bilized period-2 orbit obtained withy=—0.000 2. Again,
resents a generalization of their previous wiBk], based on g6 can obtain the whole sequence with suitable values of

the Fitzhugh's Bonhoeffer-van der Pol mo@i8E]. The main | prief, for systems presenting a remerging tree, like
idea is to have a model that produces action potentials sepgse three-variable autocatalator mod&#] considered in

rated by long interspike intervals, as found in real neuronsget [39] and the present model, one can stabilize periodic
with the additional feature that the system may exhibit sus:

: X o X L . orbits of the system at both sides of the chaotic region in the
tained burstlng. oscnlatlo.ns, ie,a stable. limit cycle 'nSteadbifurcation diagram by using either<0 or y>0.

of the usual quiescerfor fixed poin} behavior. Furthermore,

it can be shown that the model, that can be written in the

form, C. Proto-Lorenz and Lorenz models

x=y—axd+bx®+1, y=c—dx2—y, z=r[s(x—xo)—2] In the original pre;en_tatio[BQ] of the chaos suppression
3) method (1), an application to the Lorenz modgB] was
given. The result was that witlk<<O the method is able to
may exhibit deterministic chaos by adequately varying thestabilize one of the two fixed points from which the strange
| parametef53]. attractor emerges through the appearance of a homoclinic
A useful way of characterizing the behavior of the systemorbit, while which of the fixed points is obtained will depend
is by using time-interval sequences for firif8g], studied as on the initial conditions. In addition, the method is not able
a function ofl (that will be the bifurcation paramejeif one  to stabilize purely periodic behavior in thesual chaotic re-
plots the time interval between spikés versusl, it can be gion defined by the parametess=10, R=28, andb=28/3
seen that for increasing values kf regular behavior with  [3]. The explanation for this result is that in this system there
period-1, period-2 etc., is observed before chaos settleis not any nearby region in parameter space exhibiting peri-
down. For still higher values df one has periodic behavior odic behavior, and, thus, the meth@d cannot stabilize this
again, this being an example of a period-doubling reversal obehavior.
bubble[47]. We have chosen to work &t=3.35, inside the Now we shall consider the so-called Proto-Lorenz model
chaotic region. In analogy to the situation considered in Ref[55], obtained by transforming the original Lorenz flow, and
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FIG. 3. Chaos suppression in the Proto-Lorenz sys@mand S !
Ref. [55], for the parameter valuas=10.0, b=8/3, r=28.0, and
with a time step for integration aft=0.002, while the parameters X of .
of (1) are yx=yy=7v,=—0.01 andr=20At=0.04, being the be- 5k : H
havior of the system of fixed point type. i : |
.. Y . 15 I l L 1 !
where the strange aftractor origins from a homaoclinic orbit. 0 % PR %0 100
The model can be written in the form,
L 3 2 2 FIG. 4. Chaos suppression for the Lorenz mo@@) and Ref.
X=[—ox°+(20+r—z)xy+(oc—2)X ) . . .
[~o (20 Xy +(o=2)xy [3], with a set of parameters suitable for the study of laser instabili-
—(r—2)y3)/2(x>+y?), ties: 0=1.43,b=0.280, andRr=130, with a time step for integra-
tion of At=0.002, while in(1) 7=100At=0.2: (a) yx=,=0.0,
y=[(r—2)x3+ (60— 2)x%y+(—20—r+2)xy? y,=—0.01, being the final behavior a period-1 orbitb)

¥x=vy=0.0,5,=0.01, yielding a more complicated periodic orbit.
—ay®)2(x*+y?),
(4)  Lorenz model, it is possible to show that one can also stabi-
z=2x%y—2xy*—bz lize the fixed point behavior by again acting only prisee

Fig. 4(b)]. The evidence for the fact that one gets the desired
By working with the parameters=10,b=8/3, andr=28  pehavior by acting only on one of the variables is purely
this system exhibits chaotic behavior, and depending on thgumerical, and, again, it is not possible to establish this fact
initial conditions any of the four unstable fixed points can bea priori_ Similar results can also be obtained for other sys-

stabilized withy<<0 values, exactly in the same way as in tems that are related to the Lorenz mof#8,49,57.
the original Lorenz model. Thus in Fig. 3 one of the unstable

fixed points of the system is stabilized wigh= —0.01. It is
not possible to obtain this behavior by acting only on a sub-
set of the system variables. The emergence of genuine low-dimensional chaos from a
In this parameter region neither the original Lorenz modeichemical mechanism, and not from hydrodynamical mixing
nor (4) exhibit a period-doubling route to chaos. Neverthe-effects, has long been under debgi8]. The use of simple
less, for the original Lorenz model, models that are realistic from the chemical point of view,
i.e., models in which the dynamical evolution equations can
x=0(y—X), Yy=Rx—y—Xxz, z=Xxy-bz (5) be written as a polynomial with at most quadratic terms, may
shed light on this phenomenon. The WillamowskisRler
it is possible to find regions of chaotic behavior near a[59] is probably the first model suggested in the literature
period-doubling sequence and with periodic windows. Inthat exhibits these features of realism from the chemical
particular, we have fixed andb at the valuesr=1.43 and  point of view. The model can be mathematically defined in
b=0.28, while R may take values in the range the form,
100<R< 160, these parameters appearing in the study of

D. The Willamowski-Rossler model

instabilities and chaos in laser dynamj&$]. In such a case, X=kyX—K_1X2 = KXy + Kpy?— Kyxz+ kg,

a strange attractor emerges from a fixed poinRat40. By _

increasingR, periodic windows can be observed, for in- y=koxy—K_,y*—kay+k_s, (6)
stance aR~ 110, and at higher values B a reverse period-

doubling transition to chaos is observed. Thus, we have cho- 72=—kgxz+k_,+ksz—k_57?,

sen to work aR= 130, a region in which the system exhibits

chaotic behavior sandwiched between periodic windows anédnd it can be shown that this three-species chemical network
a period-doubling sequence, with the aim of stabilizing thisexhibits complex oscillations for certain values of the param-
behavior through the use of the described method abbve eters[60].

In this case, the stabilization method works only if one The dynamics of the Willamowski-Rsler model, with
applies perturbations on variat#e Thus Fig. 4a) containsa the  parameters k;=30.0, k_;=0.025, k,=0.1,
stabilized period-1 orbit, that looks similar to the behaviork_,=0.000 01, k3=10.0, k_3=0.01, k_4,=0.01,
obtained forR~ 160. For the range of parameters considereks=16.5, k_5=0.05 held fixed, and beind, the corre-
by Lorenz, and also for the original model or the Proto-sponding bifurcation parameter, can be described as follows
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. ‘ @ as can be seen from Fig(l9, where the perturbations have
been applied only ty (,=0.04). It has not been possible
to stabilize any of the other fixed points, stable or unstable,
reported in Ref[61]. The stabilization of fixed point behav-
ior occurs in this case through a transition from the strange
attractor to the coexisting attractor, and bears no relationship
to the stabilization of unstable fixed points reported for the
Lorenz system in Sec. Il C. In the case of the Willamowski-
Rossler the role ofl) is analogous to the presence of noise
(b) in the systeni61], while for the Lorenz system the method is
i effectively inducing a change in the parameters of the sys-
tem, that leads it to a region in which the unstable fixed point
. becomes stable.

67.5

22.5 E. Duffing oscillator

! Duffing’s model is a very good examplé2] of how de-
, . , terministic chaos appears in many mechanical systems that
© may be described as oscillators deriving from a nonlinear
1 potential. In this case the potential is quaitias two well,
and damping and forcing terms are present. The system can

90

67.5

>
5.
(= w vy
§ T T % T T T % T T T

X 4 T be written in the form,
25 . X+ cx+x3—x=Fcoq wt). (7
% e 10 s % > 20 It is also possible to write this model as a system of first-
t order differential equations by using the changesv and

_ _ . z=wt, in terms of the three state variables«,z). By fix-

FIG. 5. Chaos suppression for the WillamowskisBler model  jng the damping constant and driving frequency at the values
(6), and Ref.[59], with the parameters,=30.0, k-1=0.25,  ¢—0.5 andw=1.0, respectively, one obtains a route to chaos
k=10, k_,=0.0001, k;=10.0, _k*S*O'QOL ke=10. 35 a function ofF. In the absence of external forcing
K_4=0.001, ks=16.5, k_5=0.5[60] being the time step for the £ _(y "the system has two stable fixed pointsxat =1,
integration _A_tg8'200%2hatandieﬁgszooi:;i'fd' bg]ha\(/?)))'r ((fg while when some forcing is applied the system oscillates
KWy Ve m T yleles pero ) with a frequency equal to the external frequeneyaround

o - q y €q q 8
=7=00. %=004 (that yields period-2 behavior (O o 0 ad noints. In the region 0.306 <0.321 the system
¥x=7v.=0.0, y,=0.04 (that yields a transition to a stable fixed e P 9 . ' (e systel
point coexisting with the strange attractor exh|b|_ts multistability, and beyond the upper limit a perlodT
doubling route to chaos starts, that has its accumulation point
at F=0.3586. ForF<0.386 the system remains trapped at
one of the wells, while at this value df an attractor-
merging crisig 15] occurs, and the strange attractor encom-
passes both wells.

[60]. At k,=0.05 one has a limit-cycléeriod-) behavior,
that at k,=0.095 becomes period 2, following a period-
doubling route to chaogthe model exhibits chaos from
k4~0:097). qu still higher values &, the system exhlblts The behavior observed for this system is very similar to
a period-doubling reversg#7], and one has a stable limit yhat found for the case of the Holmes map, as reported in
cycle fork,=0.13, and finally a stable focus froky=0.2.  Ref [42(b)] (indeed the Holmes md63] was designed to be
This system has been studied in the chaotic regiong, approximation to the Poincareap of the Duffing sys-

namely, by choosing,=0.1. By applying the above de- () ' this system one may appig) independently to any
scribed chaos suppression methay it has been found that of the two variables< or , and Figs. €3 and (b) contain

for y<0 values it is possible to stat_)iIiZ(_a orbits related with examples in which periodic behavior is stabilized by
the or|g|'nal systgm fok4<Q.1. Thus in Fig. &) we present acting on a single variable at a time.
a stabilized period-1 orbit withy=—0.01 and 7=0.04,
while period-2, period-4. and period-8 orbits are easily sta-
bilized for othery<0 values. It is also possible to stabilize
periodic orbits by using/> 0 values, but not if the pulses are  Now we shall try to obtain some preliminary conclusions
applied simultaneously to all the variables. Thus Figh)5 from the results obtained after the application of the chaos
presents a stabilized period-2 orbit obtained by usingsuppression method to the models studied in Sec. Ill. We
vx=0.04. hope that these caveats may be of help to potential users of
For the reported values of the parameters, the system préie method. It is important to bear in mind that most of the
sents a set of fixed points, of which two of them are stableconclusions mentioned in the present section emerge from
while the rest are unstable. The first stable fixed pointempirical observations for the models studied in this work
has the coordinates,=3.3338<10 %, y,=1.0000<10 #,  about the way in which the methdd) appears to work. It
z,=32.999[61], and by using adequate parameter&lintis  could be that one could find some counterexample in which
possible to induce a transition in the system to this behaviorsome of these conclusions are violated. One of the observed

F. Some remarks
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ferent physical interpretations, as is the case of the Duffing
15k | @ | model of Sec. Il E, offer another illustration of the applica-
tion of perturbations to a subset of the system variables.
Another interesting feature of the present chaos suppres-
sion method is that, although formally the method works by
introducing a new parameterin the system and then mak-
ing fixed, static changes to that parameter, it effectively
‘ achieves some kind of dynamical exploration of the param-
5 ] ‘ eter space of the system. This can be better illustrated for the
1.5 b I (b) | case of the Hindmarsh-Rose neuron mogele Sec. Il B.
' The model is a function of eight parameters, and it is difficult
to know a priori which is the most relevant parameter to be
varied in order to obtain the whole bifurcation tree of the
system. Indeed, by varying some of the parameters one gets
a quite monotonidand boring behavior, completely unre-
. ‘ lated to the sought transition between chaotic and periodic
0 40 80 120 160 200 behaviors. In some sense, one needs to know a lot about the
system, like which is the right parameter to be varied, before
FIG. 6. Chaos suppression for the Duffing oscilla@rwith the ~ @PPlying ordinary chaos control or chaos suppression meth-
parametere=0.5, F=0.42, o=1.0[62], being the time step for 0ds on a system parameter. Instead, what we have observed
the integrationAt=0.002 andr=100At=0.2 in (1): (@) y,=0, for the systems considered in the present work is that if one
y,=—0.04 and one gets period-1 behavidl) 7y,=—0.03, uses(1) we have observed that, althoughis nothing else
7,=0, that yields period-2 behavior. than a system parameter, one seems to be able to obtain the
) ) whole bifurcation tree of the system by varying it. This fact
features is that in the casg<0 the method(1) works by  of finding the right control parameteis achieved without
stabilizing certain periodic orbits that coexist with the any previous knowledge about the system under study. These
strange attractor. These unstable periodic orbits are similafegits should be considered as empirical findings for a num-
although not identical, to stable orbits corresponding toyer of systems, and it could be that other conclusions are
nearby regions of the system in parameter space for whichptained for other unexplored models.
the system exhibits a regular behavior. !nstead, in the case |t s in this context that the idea afynamical exploration
that y>0, the method apparently works in a safe way onlyof the system should be understood, which may be a positive
when one has a bubbler remerging trep In such a case, feature of the method when applied to situations for which a
the application of bothy<0 and y>0 has the effect of getajled modelization is not available, as is the usual situa-
stabilizing different regular behaviors related to one of thetion when dealing with biological systems. At the present
two periodic regions that are to the left and to the right of theqmyoment we cannot offer a theoretical explanation of why
bubble in the bifurcation diagram. The use#0 in other s 5o successful in achieving this exploration of the bifurca-
cases typically yields transitions to an attractor at infiéy  tion tree, and we can only say that this is the behavior that is
explosion) or other nonuseful behaviors. _ actually observed. The values ¢fthat have been used to
One_could also wonder whether one should manipulate aguppress chaos are typically in the order of, at most, a few
the variables of the system, or rather a subset of them. Byercent, as is the case of the present example. This illustrates
perturbing simultaneously all the variables of the system ongne fact that the method only introduces small perturbations
typically obtains a regular behavior that is related to a betg the state of the system. In this sense, the method belongs
havior of the unperturbed system obtained by using differentyy the nonlinear chaos controtlass of methods, and not to
but close, values of a system parameter. Instead, the casesijit class of methods based on a more linear way of reason-

which perturbing a subset of the system variables one is ablgg, and that work by applying stronger perturbations to the
to stabilize different behaviors should be considered as exstate of the system.

otic, in the sense that one obtains such behavior just for very
specific systemgéwith the exception of the Lorenz model, as IV. RELATIONSHIPS BETWEEN THE PARAMETERS

dis_cussed _in "Sec. INC Thus, in the _case of _the OF THE CHAOS SUPPRESSION METHOD
Willamowski-Rassler model(see Sec. Il D), if one applies
perturbations such that, <0, while y,= y,=0, the effect is In this section we shall try to analyze some generic fea-

to induce a transition from the strange attractor to a coexisttures of the chaos suppression method through proportional
ing fixed point. This is due to the particular structure of thischanges in the system variables introduced in Sec. Il, with
model in phase space, as the strange attractor passes quie basic aimthat, however, is not always fulfill@df ob-
close to the origin in thet-y phase plane, while the coexist- taining somea priori information about the values of and

ing stable fixed point has itg coordinate very close to zero, 7to be used. In order to achieve this goal, it would be useful
and, thus, the application of, <0 has the effect of inducing to have data for a number of systems, with the aim of ob-
this transition. However, one should not expect to obtairtaining some general trend. Thus we have performed a sys-
analogous results for other systems by applying this kind ofematic study of the set of models recently introduced by
specific perturbations to the system variables. Other exSprott[46]. This author has presented 19 models, supposed
amples in which the different variables may indeed have difto be the simplest examples exhibiting chaotic behavior, with
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either five terms and two nonlinearities or six terms and oneic equation, i.e., of systems that exhibit a quadratic one-
nonlinearity. In this work we shall not consider the first dimensional return map, and, thus, a period-doubling route to
model given by Sproftsystem A, because it is conservative, chaos, Huberman and Rudnif&4,65 have introduced the

and we are only interested on dissipative systems. following relationship,
In order to find quantitative relationships, it will be useful
to consider the Lyapunov exponents, characterizing the A=X\o(P—Po)%, (1D

growth of perturbations in the unstable direction of the at-

tractor. Sprott has systematically reported the Lyapunov eXgjith =1In2/Ins=0.4498, and beings=4.52 ... Feigen-
ponent for these systenié6]. Thus, if one makes a small paym's universal constant. In this relationship the highest
perturbationsx(0) on the attractor, its time evolution willbe | yanunov exponenk plays the role of an ordeor, in this
ox(1)~ ox(0)expQt), whereh is the highest Lyapunov ex- case, disordgmparameter of the system. Due to the existence
ponent of theN-dimensional system under study, being thisof periodic windows in the midst of chaos, this relationship
relationship only approximate. If one considers the situationspould be valid just for the envelope in which all the merg-

in which the time scale in which the changes in the variablesngs from 2" bands into 2~ bands occur inside the chaotic
are applied, i.e.7in (1), is faster than the time scale fixed by yggjon.

the inverse of the Lyapunov exponent, i.est, =1/A, then Having a number of chaotic systems of the same type, we
one can linearize the previous expression to obtain, have chosen to look for some relationship between the
Lyapunov exponentdisorder parametgand just one char-
SX(7)= SX(0)(1+ 7). ® oo . s,

acteristic parameter of the chaos suppression methots
we have already shown thatand r are relatefl The chaos
suppression methad) works by stabilizing a given periodic
rbit, but not in a smooth way due to the presence of instan-
aneous kicks to the variables. However, one can consider
that the stabilized periodic orbfhadowsa smooth periodic
orbit of the systenj39]. The orbits stabilized by the chaos
suppression method) are a discrete approximation to con-
tinuous orbits. Taking into account relationsh{@), one
could replace a given realization of the chaos suppression
yl7=C, (9) method, that have given values forand 7=jAt, with an-
other one in which the perturbations are applied at each in-
C being a constant. This relationship has been shown to b&gration step, and having = y/j. In this case the stabilized
fulfilled through numerical experimentation, provided thatorbit would coincide with the shadow orbit. Of course, this
7 is not too large. discussion is only qualitative, as it is known that in some
Another possibility that has been considered is that thdnherently unstable situations a shadow orbit cannot be de-
proportional perturbations are applied to the system variablened[66]. A different situation is that in which the kicks are
in the form of a square pulse, that has a finite duration, inlarge, beingr probably also large, wher®) will not hold. In
stead of doing it instantaneously. In the practical implementhis case, the stabilized orbit would be clearly noncontinu-
tation of the method this would imply that the pulse elapseUs, and the relationship with the shadow orbit will be less
a finite number of integration steps. The results so far obclear. In such a case it is not even clear whether one can
tained for some of the examples considered in Sec. Il indieffectively stabilize a periodic orbit, even for structurally
cate that the same stabilized orbits can be obtained by th&able problems.
appropriate tuning of the parameters. Moreover, a more The idea now is that if one fixes the time step for the
quantitative relationship has been discovered between tHgtegration and the intensity of the perturbations, that will be
duration of the square pu|se, th, and the parameterﬁ the same for all the Variables, then the interval between
and 7. If, in the spirit of (9), one fixesr, then the relation- Pulses should be related to the highest Lyapunov exponent of
ship between the for the original method, wherg=1, and  the system, that is the disorder parameter. This can be ex-
its modified value with pulses of duratigntime steps, say Plained qualitatively as follows. If the highest Lyapunov ex-

If one now linearize$x(t) for a time 2, and if 2r<t, holds,
the result iséx(27)~ &(0)(1+2\7), and this implies that in
this linear regime two successive applications of the metho
with y and a time stepg are equivalent to a single applica-
tion of (1) with time step 2 and doubled intensity2 This is
equivalent to the previous empirical findifg9] that for a
given systemy and 7 are related one to each other in the
form

yi is found to be as simple as, ponent were zero, then no perturbations should be applied as
! the system would stay all the time in the periodic orbit, that
yi=7lj. (100  would coincide with theshadoworbit. However, small posi-

tive Lyapunov exponents imply that one needsdorectthe

This implies that through the application of the more realisticorbit from time to time in order to keep it close to the
finite pulses one may reduce the relative impact of the pershadow orbit. In principle, the higher the Lyapunov exponent
turbations making a smaller deformation on the system, alis, the smaller the interval between kicks should be.
though the totammountof the system variables that is in-  We shall fix the intensity of the perturbation, that will be
jected or retired is constant. equal for all the variables, to take the valye= —0.02

One of the most rewarding aspects of deterministic chao§2 % of perturbatioly while the time step of the integration
is the observed universalif?] in the way in which systems method takes the valuAt=0.01, the one considered by
with completely different descriptions at the microscopic Sprott in his study46]. Then, the maximum possible value
level perform the transition from regular to chaotic behavior.for the interval between perturbations for which a period-1
For the case of systems in the universality class of the logiserbit is obtained will be recorded, with the aim of correlating
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TABLE |. Largest Lyapunov exponemt, , characteristic time
7,=1/\,, and values of-; /At, the maximum possible number of

the interval between pulses, that are needed to stabilize period-1 1r
orbits in selected Sprott chaotic modé#6| (see[67] for the evo- |
lution equationsby usingyx= yy=yz=—0.02 andAt=0.01(see X 2r )
Sec. V. at : ]
Case N T, T /At 4r T
! 1‘ Il Il I3 Il 1 (a)

D 0.103 9.7 17 0'3 : : : : : :
F 0.117 8.5 14 ol ! ]
G 0.034 29.4 26 '0 ' |
H 0.117 8.5 15
[ 0.012 83.3 138 x o1 |
J 0.076 13.1 46 02 :
K 0.038 26.3 46 -03 ;
L 0.061 16.4 24 041 X (b) T
M 0.044 22.7 36 Og: : ' ' : ' :
N 0.076 13.1 50 ' L ‘ ' '
0] 0.049 20.4 35 0,025 |
P 0.087 115 26 :
Q 0.109 9.2 26 X 03l N |
S 0.188 53 26 !

20.575 {
it with the the highest Lyapunov expondsee Table)l The : (©)

idea is to obtain a relationship that might allow us to predict 083, 0 80 120 160 200

t
the parameter to be applied in the chaos suppression method

(1) for the unexplored systems from the knowledge of the FiG. 7. Chaos suppression for some selected examples of the set
highest Lyapunov exponent. Figure 7 shows three examplest systems introduced by Sprd#6] (in all cases the parameters
of the periodic orbits that are stabilized in these conditionssmployed are those reported by Sprott, including the time step for
for three of these systems, namely, systems D, |, and O. the integration, that is\t=0.01). By fixing y,=y,=y,= —0.02
The sought relationship between the highest Lyapunothe maximum value of, called r;, such that one obtains period-
exponent and the time interval between pulses to achieve d behavior is reportetgiven in units of the time stgp(a) model D
period-1 orbitr, /At has been obtained numerically by plot- with 7/At=17; (b) model | with 7/At=138; (c) model O with
ting the logarithm of the inverse of the Lyapunov exponentr/At=35. Notice that these values are a part of Table | and of
7. = 1/\ versus the logarithm of, /At (see Fig. 8 and Table Fig. 8.
I). Not all the systems studied in R¢#6] have been con-
sidered in this study, as system A is conservative, systems Bf Feigenbaum’s route are known. As the SRler system
and C do not belong to the universality class of systems witl{see Sec. Il A is of the same type of the set of Sprott sys-
a period-doubling routéhese systems, that exhibit a double- tems, we have decided to try to shed some light on these
scroll attractor, are in the same universality class as the Loissues, as there exists a study of the variation of the highest
renz system System E can only be stabilized by using Lyapunov exponent as a function of(68]. If one considers
vy>0 values, and system R does not appear to yield aeveral values of in the range 4.2 5.0, one indeed obtains
period-1 orbit(see Ref[67] for the definition of the Sprott a relationship of the forni11). By inserting these values as
systems used in the present wprkhe result is a good fit to  additional points in the previous fit, it can be seen that some
a straight line with a slope close to 1, that implies a straighof them are in agreement with the straight line fit, while
line relationship betweerr, and 7,/At, for eight of the some others fall somehow apart.
systems, while the others depart somehow from this behavior Moreover, this behavior is not erratic, as the parameter
(see Fig. 8 values that are close to the transition point do indeed yield a
One may wonder why the observed relationship is lineagood fit, while some of the points that are farther from this
and does not have the form @21). The fact that one finds a transition point do not fit well. The key point is not just the
linear relationship between, andr;/At, while 7, exhibits  distance from the transition, but rather whether the point un-
a relationship of the fornil1) implies an analogous relation- der consideration is inside or near a periodic window in the
ship for 7, /At, having exactly the same exponemnt This  chaotic regime. Huberman and Rudnid4] found a rela-
has been verified numerically for the systems considered itionship valid for the envelope past the transition point from
the present section. Another question is why some systenperiodic behavior to chaos. However, the chaotic region is
appear to fulfill so well this relationship, while the others interspersed with many periodic windows, and points in
significatively deviate from this behavior. One problem isthese regions will not obey the expected relationship be-
that a single item of information is available for these sys-tween the Lyapunov exponent and their distance to the onset
tems, and, thus, neither the control parameter that regulated chaos. Not much is known about the relative distance of
the route to chaos, nor the distance to the accumulation poirthe Sprott systems to the onset of chaos, and whether they
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45 : , , . sition to chaotic behavior. Thus, the main conclusion is that
by applying proportional pulses simultaneously to all the
4t 4 system variables, withy<<O and not too large values of
and 7, one is able to stabilize some regular state of the sys-
L 35F 4 tem. This behavior is related to that exhibited by the original
o ° system in a nearby region in parameter space for which the
= 3+ 4 system is regular. This should be the general recipe to be
— . applied in a generic situation. Which behavior will turn out
a5k R eo i to be depends on the precise route to chaos of the system, as,
o in principle, the method seems not able to create behaviors
2k i that are not present in an unstable form in the system.
Other possible uses of the method should be regarded as
L5 L ° , , more or lesexotig and they have been presented here only
2.5 3 3.5 4 4.5 5 to illustrate other features of the method. Thus one may won-

In(t/At) der which should be the sign of the perturbatignto be
applied in(1). One usually employs negative values fgr
FIG. 8. Graphical representation of the values of Table I, tothat take the system to the prechaotic behavior, but in some
show the linear relationship # versus In{/At), being 7. the in-  circumstances, like the case of the systems exhibiting a re-
verse of the highest Lyapunov exponent=1/\ and 7/At the  merging tree(or bubble [47], the application of both posi-
maximum number of integration steps that are necessary to stabilizg,e and negative perturbations works in the aim of stabiliz-
a period-1 orbit withy=—0.02 andAt=0.01_. A straight line with ing the periodic behavior. Another point refers to the
parameters In, =—0.521+1.004lr can be fitted very well to the  gifferent performance obtained by applying perturbations to
eight systems represented with filled circles. all the variables versus the application of pulses to a subset
of these. It appears that, with the conspicuous exception of
are close or not to a periodic window. Thus, finding quanti-the Lorenz modelsee Sec. Ill ¢, in almost all cases the
tative relationships may be useful, but cannot be consideregpplication of changes to all the variables is more effective
a universal panacea for chaotic systems in all possible pahan the use of a subset of them.
rameter regimes. In some cases, one only needs to apply stronger perturba-
To conclude this section, and taking Sprott modé& as  tjons to a smaller number of variables, while in a few cases
a useful example, it is perhaps interesting to mention one ofhe method is no longer able to stabilize a periodic orbit.
the potential applications of the present method. When on@nother empirical remark is that the double-scroll strange
studies for the first time a different chaotic model, knowing attractors(like Lorenz model are more difficult to stabilize
nothing about the behavior of the system when some paramhan single-scroll strange attractdfike Rossler's model A
eter is varied, routes to chaos, etc., the chaos suppressigpalitative explanation for this fact might be as follows.
algorithm suggested in this work may allow one to perform apouble-scroll strange attractors have a region between the
useful first approach to the system. Thus, the method woulglyo bands with a very strong sensitivity to initial conditions.
afford some kind of exploration of the system through itsThus, one needs to perturb more the system in order that it
dynamica] rather than by using thetatic parameters. In this  pecomes periodic, while the Lyapunov exponent will be
sense, it would allow the exploration of the most typical higher, and all the arguments developed in Sec. IV should
behavior of the systertsee also Sec. IllF also apply. These are different manifestations of the fact that
the single-scroll systems belong to the universality class of
the logistic equation, while many double-scroll systems be-
long to that of the tent mafalthough not always
In the present work the recently suggested chaos suppres- The present proportional method appears to be superior to
sion method 39] through proportional changes in the systemthe alternativg43] in which one applies additive perturba-
variables(1), or, equivalently, minute kicks in the system tions on the system variables. This remark should be under-
variables that are proportional to their current value, has beestood in the following practical sense. The proportional
applied to different kinds of systems and analyzed in somenethod considered in the present wdfl is successful in
detail. Some of the conclusions obtained from this work, busuppressing chaos in a number of chaotic systems. Instead,
also from other investigations from parallel studies, will nowthe application of the additive perturbations is able to yield
be summarized. First of all, what a potential user of theanalogous results in many cases, while it fails for a number
present method will probably wish to know is the answer toof examples. The opposite situation has not been found to
guestions like the conditions under which the method willhold in any case, i.e., it has not been found that the propor-
work or not, and which variables should be manipulated andional method fails to suppress chaos for a system for which
in which form. The key point is that from the empirical evi- the additive method is able to achieve that goal. The expla-
dence it appears that the method works by stabilizing perination for the superior performance of the proportional
odic orbits or fixed points that are close, although not necesmethod is probably that a chaotic system usually spans a
sarily identical, to invariant sets for the unperturbedsubstantial range of values in phase space, and the applica-
dynamical system, although for slightly different values oftion of fixed, compromise, and additive perturbations on the
the parametergsee, e.g.,[42(b)]). These orbits or fixed system variables is less efficient than the use of proportional
points become unstable when the system performs the traperturbations.

V. DISCUSSION AND CONCLUDING REMARKS
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The method studied in the present work differs from thestrange attractor, but its attraction basin is very small. This
usual chaos control and chaos suppression metf&8kin implies that it is very difficult that one becomes aware of the
that it does not focus on some accessible paranietio of  existence of the fixed point and its possible practical rel-
the system, but instead has as its target the system variablesance if one works strictly at the deterministic level. How-
(dynamical. For many physical systems locating a suitableever, if some noise is introduced into the system, there will
system parameter is not difficult, and indeed it may be moréde a noise-induced transitiqsee, e.g.[61]). As the chaos
amenable to manipulation than the system variables thensuppression method considered in this work is also able to
selves(as is the case of lasef56], where the system vari- induce this transition, one may consider it as a way of dy-
ables represent things like polarization, which is difficult to namically exploring phase space by applying kicks to the
operate. Instead, if one considers chemical, biological, orsystem variables, while one stays at the deterministic level of
other systems, locating the suitable parameters may be modescription.
difficult (in some cases one may even be completely ignorant Another field of interest in which it is foreseen that the
about the evolution laws of the systgniHowever, in these present method might be of interest might be in the case of
cases one can always identify at least some of the relevatite extended systems exhibiting phenomena like that of spa-
variables of the system, with the meaning of populations, antiotemporal chaos, etc. If one has a discrete system, e.g., a
alter them with the aim of controlling the behavior of the coupled map latticg69], the idea would be to apply pertur-
system and/or dynamically exploring other behaviors of thebations to one of the nodes, that are diffusively coupled to
system. The meaning afynamical explorationin this con- the rest of the network, and then the regularization would
text would be as a variant of the ususthtic exploration extend to the rest of the network. A preliminary application
carried out by pulling the knob on some parameter. of the present method along these lines has already been

One example of the feasibility of this dynamical explora- carried out in Ref[70].
tion is the Hindmarsh-Rose model considered in Sec. 1l B. Chaotic systems have been usually considered as danger-
This system(3) has eight different parameters, and, thus, aous. While the use of chaos control techniques may be very
more or less systematic exploration of the behavior of théhelpful in keeping track of these situations, it appears that the
system would imply the consideration of variations in thecommon wisdom in medicine that deterministic chaos might
eight-dimensional parameter space, which would be quitbe behind many diseases, like heart attacks, etc., could be
cumbersome. Instead, it is found that by applying proporunjustified. Recent evidencgrl] indicates that chaos is
tional perturbations to the system variables throhand healthy, because a living being lives in an adapting environ-
making equal perturbations byto all the variables, one may ment, and the repertoire of periodic behavior that is con-
explore all the dynamical behaviors of the system with just dained in a strange attractor makes the system more adaptable
single parameter. The same can be said about the systemsder external influences. Some theor{3tg] even hold the
introduced by Sprot{46], that were used in Sec. IV. By view that maximum fitness is linked to a state that is in the
choosing arbitrary values for the parameters and varying boundary between order and chaos. Stabilized periodic be-
one may have a first acquaintance with the behavior of théavior through a certain procedure might fulfill this require-
system, including the qualitative shape of the strange attragnent, and could be behind the way in which living beings,
tor, routes to chaos, alternative behaviors, etc. This idea afcosystems, etc., achieve this productive state.
dynamical exploration can be useful regarding the role of the
initial conditions, not just the system parameters. If one con-
siders the Willamowski-Resler model as an examplsee
Sec. Il D), this system has two stable fixed points that co- This work was supported in part by DGICY(Bpain Re-
exist with the strange attractor. The point is that one of thesearch Grants No. PB92-0299.A.M.) and No. PB92-0279
fixed points appears to be globally more stable than théJ.G).
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