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In this work a detailed analysis of a recently introduced chaos suppression method through proportional
perturbations in the system variables@M.A. Matı́as and J. Gu¨émez, Phys. Rev. Lett.72, 1455 ~1994!# is
presented. The method does not require any previous knowledge of the system dynamics and could be specially
useful for those systems, e.g., chemical or biological, for which it may be advantageous to act on the system
variables rather than on the parameters. The performance of the method is illustrated with several autonomous
and nonautonomous flows, including issues such as the possibility of stabilizing different periodic or fixed
point behaviors. Finally, a quantitative relationship among the parameters of the method is sought in terms of
the highest Lyapunov exponent of the system.@S1063-651X~96!00507-7#

PACS number~s!: 05.45.1b

I. INTRODUCTION

One century after the pioneering work of Poincare´, recent
years have seen the emergence of the field of nonlinear dy-
namics~see, e.g.,@1,2#! which consists in the study of far-
from-equilibrium systems, characterized by responses that do
not depend linearly on the applied stimulus. Some of the
phenomena that are characteristic of this field, such as low-
dimensional chaos, solitons, patterns, the emergence of com-
plexity, etc., reflect a lot of unexpected order compared to
the linear world of near-equilibrium systems, that are domi-
nated by the tendency towards disorder dictated by the sec-
ond law of thermodynamics. Nonlinear dynamics offers a
common framework that is useful in a variety of different
branches of science, ranging from fluid dynamics, meteorol-
ogy, photonics, to biology, economics, and social sciences.
One of the most fascinating behaviors of this kind of systems
is low-dimensional deterministic chaos, in which a system
with perfectly known evolution laws exhibits sensitive de-
pendence on the initial conditions. Thus if one has two tra-
jectories with initial conditions differing by some arbitrarily
small amount, they will become completely uncorrelated af-
ter a certain time has passed. The consequence is a continu-
ous loss of information on the dynamical behavior of the
system.

After the practical discovery of chaos in a set of differen-
tial equations by Lorenz in 1963@3#, scientists have initially
studied it as a curiosity, but, on the other hand, all efforts
have been made to avoid the appearance of this behavior in
practical settings. In fact, deterministic chaos may cause un-
controlled vibrations and fatigue failure in mechanical sys-
tems, temperature oscillations outside safe margins, voltage
jumps in electrical systems, and, in general, malfunctioning
and unpredictable behavior in these systems, including also
chemical reactors. Despite its intrinsic complexity, the cha-

otic behavior exhibited by many experimental systems can
be described in a low-dimensional way in terms of a few
modes. The hallmark of those dissipative systems exhibiting
chaos is the appearance of a fractal structure in state space,
coming from a continuous stretch and fold process, called
strange attractor, on which the asymptotic behavior of the
system takes place.

The realization by Ott, Grebogi, and Yorke~OGY! @4#
that one can apply small time-dependent perturbations to a
chaotic system in such a way that its behavior becomes regu-
lar and predictable may look surprising at first sight. The key
remark @5# is that a strange attractor can be viewed as the
closure, or superposition, of a very large number of unstable
periodic orbits. Intuitively one sees that in most routes to
chaos new periodic motions are progressively created until
the coexistence of all of them leads to chaos. This can be
stated in other words by saying that the dynamical behavior
of a chaotic system consists in a continuous switching be-
tween many different possible periodic behaviors, none of
which predominates. The idea of controlling chaos is pre-
cisely to activate one of the underlying periodic behaviors
~see@6–8# for recent surveys!.

This simple idea is completely changing the reputation of
chaotic systems, because under this perspective chaos is no
longer a drawback, but rather an advantage. Within the con-
text of classical linear control theory, see, e.g.,@9#, one needs
to apply relatively large perturbations to the system in order
to produce large changes in the system behavior. Although
this philosophy has also been applied to nonlinear systems
@10#, the OGY scheme is more efficient, in the sense that the
perturbations that one needs to apply to stabilize a given
orbit are in the order of a few percent, due to the fact that the
target periodic behavior is already present in the strange at-
tractor. Moreover, one can choose among many different pe-
riodic behaviors and it is possible to switch from one to the
other, implying this fact that controlled chaotic systems are
very flexible. All this endeavor could be specially helpful to
explain the behavior of many biological systems, for which
the issues of adaptability to the environment and evolution
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may be explained if one sees them as self-regulatory nonlin-
ear systems.

The OGY method@4,11,12# works in a discrete fashion,
and when applied toN-dimensional flows consists in the
definition of a suitably chosen (N21) Poincare´ return map
that gives the crossings of the flow with this plane. The
method exploits the saddle character of the unstable periodic
orbits and applies the necessary perturbation to a parameter
of the system in such a form that the system always stays
near the stable manifold of the periodic orbit. The perturba-
tion to be applied to a system parameter is calculated by
linearizing the flow locally around a trust ball. The method
has proved its versatility in a number of exotic situations,
such as the control of transient chaos@13# and the stabiliza-
tion @14# of strange attractors destroyed in a crisis@15#.

The OGY method has experienced a number of improve-
ments that make it suitable for its application to experimental
systems of which one only knows a time series@16#, and to
the study of higher-dimensional systems@17#, among others.
One variant of the chaos control idea, the occasional propor-
tional feedback~OPF! method@18–20#, exploits the strongly
dissipative nature of the flows encountered in practical appli-
cations, allowing us to work with a one-dimensional return
map of the system, which makes things much simpler. The
result is that a very large number of applications to experi-
mental settings exhibiting low-dimensional chaos and that
use different approaches has appeared, ranging from a mag-
netoelastic ribbon@21#, to spin-wave instabilities@22#, a ther-
mosiphon @23#, a diode resonator@18#, a laser @24#, the
Belousov-Zhabotinsky reaction@25#, and also to heart tissue
@26# and neurons@27#. These applications have enlarged the
applicability of the controlling chaos ideas to a number of
experimental situations~see also@28#!.

One of the disadvantages of the OGY method in practical
applications is that it is necessary to have a quite detailed
knowledge of the system under study. For example, one
needs tolearn details about the location of the target un-
stable periodic orbit. A second source of potential problems
is the discrete nature of the method: perturbations are only
applied when the flow crosses the appropriate Poincare´
plane. If the largest Lyapunov exponent of the system is
relatively high the applied perturbations may be insufficient,
and more refined techniques are required@29#. An approach
that, in principle, overcomes the difficulty associated with
the discrete nature of the OGY method is the continuous
control technique put forward by Pyragas@30#. The idea in
which this method is based is the synchronization of the
target system with a time series produced by itself, either
periodic or aperiodic. This method has also been applied to
some experimental settings, including electrical circuits@31#
and chaotic chemical reactions@32#.

A different situation is that of the so-called nonfeedback
methods, for which one uses no previous information about
the system for controlling purposes. First of all, one has
those methods@33–37# that apply an external modulated
force on some system parameter, activating a regular behav-
ior in the system in a resonant fashion. The main usefulness
of these methods may be in the case of very fast systems,
e.g., lasers, for which the natural time scale of the system is
so fast that the application of a chaos control method like
OGY, in which some calculations have to be carried out in

order to determine the stable and unstable manifolds, cannot
be performed in time. Another possibility is to apply an ex-
ternal high-frequency modulation@38# that stabilizes a peri-
odic behavior in a nonresonant way, equivalent to the shift of
some system parameter into a nonchaotic region.

All the methods presented so far, possibly with the excep-
tion of Pyragas’@30# method, have in common the fact that
they are able to stabilize periodic behavior by acting on some
system parameter. The aim of the present contribution is to
discuss in some detail the properties of a recently introduced
@39# chaos suppression method that works through the appli-
cation of regular perturbations in the form of spikes, i.e.,
minute kicks, on the system variables. Like other nonfeed-
back methods, one of its advantages is the fact that it does
not need a previous knowledge of the system’s dynamical
behavior. The fact that it acts on the system variables, rather
than on some parameter, makes the present method specially
attractive in the case of chemical or biological systems, for
which finding a suitable parameter might be problematic. A
direct implementation of the OGY method that acts on the
system variables has also been introduced@40#.

The method considered in the present work has already
been applied to the case of dissipative one-dimensional@41#
and two-dimensional~2D! maps~both invertible and nonin-
vertible! @42#. The examples studied in Ref.@42# include the
case of systems exhibiting a quasiperiodicity route to chaos
@2#, resulting from the coexistence of several periodic fre-
quencies, and also the case of the systems in which a strange
attractor is born or destroyed in a crisis@15#. This includes
the case of the boundary crises, that happens when the
strange attractor collides with a periodic orbit on its basin
boundary, with the result that the size of the strange attractor
changes suddenly~in the example studied in Ref.@42# points
that lie outside the attractor’s basin escape out to infinity, and
this implies that the system goes to infinity after the crisis!.
The method has also been applied to the case in which the
perturbations are applied to a Poincare´ cross section of the
flow @43#.

In the present work the original method for flows@39#,
that typically applies several pulses between two crosses
with a Poincare´ plane, will be applied to different systems of
differential equations, both autonomous and nonautonomous.
In addition, quantitative relationships between the two pa-
rameters of the method, namely, the intensity of the pertur-
bations and the time interval in which they are applied, will
be presented. A crucial parameter in these relationships is the
degree of chaoticityof the uncontrolled system, as measured
by the highest Lyapunov exponent.

The present paper is organized as follows. Section II dis-
cusses the main features of the chaos suppression method
used in the present work. Then, the method is applied in Sec.
III to a few ordinary differential equation systems with the
aim of illustrating the main features and potentialities of the
method. Later, Sec. IV has the aim of exploring the method
in a more quantitative fashion. Finally, Sec. V contains the
main conclusions from the present work.

II. METHOD

The aim of the present work is to discuss the main prop-
erties of a recently introduced chaos suppression method
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@39#, namely, in the case that is applied to ordinary differen-
tial equation systems yielding deterministic chaos. The
method works by applying instantaneous periodic kicks to
the system variables, that amount to changes that are propor-
tional to their current values, and that take the form,

Xi5Xi@11g id~ t2 j t!#, ~1!

whereXi represents thei th variable of the system at a given
instant of time,g i regulates the intensity of the perturbation
applied to thei th variable,d is Dirac’sd function, andj runs
over natural numbers, implying that the kicks are applied at
intervals that are uniformly spaced byt. The proportional
perturbations can be applied to all or only to some of the
system variables. For example, in the case of nonlinear os-
cillators represented by second order differential equations,
and where one has a pair of position and momentum coordi-
nates, the perturbations might be applied to only one of
them. Regarding the sign of theg i , it can be either positive
or negative, as illustrated in more detail in the examples
studied in the next section.

All the numerical integrations in this work have been per-
formed by using a fourth-order fixed-step Runge-Kutta pro-
cedure@44#. The time step has been chosen to avoid spurious
behavior, being typically in the rangeDt50.001–0.01 units
of time, unless otherwise stated. Fixing the value of the time
step is quite convenient in the numerical work, because then
the kicks are applied at fixed values of the number of inte-
gration steps, i.e., one makest5 jDt, wherej is some natu-
ral number. Otherwise, if one operates directly with time as a
real variable spurious behavior may be obtained due to
rounding errors.

The result of the operation of the method is that a differ-
ent dynamical system is created that hasg andt as param-
eters~although a relationship between them can be found,
see Sec. IV!. During n21 steps the system evolves follow-
ing the recipe of the unperturbed system, while at the end of
thenth step a discrete change takes place. For a fixed value
of t, and depending on the value ofg, the dynamical system
will exhibit chaos for low values ofugu, until for a given
critical value the behavior of the system will become regu-
lar, this transition being usually related to the routes toward
chaos exhibited by the unperturbed dynamical system.

The stabilized periodic orbits~or fixed points! obtained by
application of the method are not identical to the correspond-
ing unstable periodic orbits~or fixed points! embedded in the
strange attractor. Nevertheless, it has been empirically found,
see, e.g.,@42~b!#, that these stabilized orbits~or fixed points!
are close to orbits~or fixed points! of the unperturbed dy-
namical system for nearby parameter values that yield regu-
lar behavior. The method~1! exhibits some resemblance with
those methods able to achieve chaos suppression through the
application of an external resonant forcing term. However, it
will be shown that if one fixest, then any periodicity can be
stabilized by varyingg, implying that the method presents
some analogies to the nonresonant chaos suppression method
through fast modulation of some parameter of Ref.@38#, that
amounts to a shift in such a parameter and that allows stabi-
lization of any periodic behavior.

III. APPLICATIONS

The present section contains a series of three-variable
continuous models that exhibit deterministic chaos for some
parameter ranges. The examples have been chosen to illus-
trate different features of the method, such as the possibility
of using both negative and positive values ofg in ~1!, the
stabilization of periodic orbits, but also of fixed points, and
other features. In Sec. IV a more quantitative study of some
features of the method will be presented.

A. The Rössler model

After studying the Lorenz attractor, Ro¨ssler was able to
obtain the simplest nonlinear vector field capable of generat-
ing chaotic behavior@45# ~see, however,@46#!. This single-
scroll strange attractor is written in the following form:

ẋ52x2y, ẏ5x1ay, ż5b1z~x2c!, ~2!

such that it has a single nonlinear termxz in ż.
By fixing a and b in the valuea5b50.2, one has a

period-doubling ~Feigenbaum! route to chaos where a
period-2 orbit is created atc52.6, and beingc;4.2 the
accumulation point of the period doubling cascade, beyond
which one has deterministic chaos, excepting for the pres-
ence of a number of periodic windows. The system has an
unstable fixed point near the origin whose 2D unstable mani-
fold presumably spans the strange attractor. It appears that
the strange attractor does not exhibit a remerging tree~or
period-doubling reversal! @47#, at least for not too large val-
ues ofc.

This system serves to illustrate the possibility of using
either g,0 or g.0. At c54.6 the system is chaotic, and
chaos appears through a period-doubling route. Application
of perturbations withg,0 stabilizes different periodic be-
haviors, that correspond to regular states of the system for
c,4.6. Thus, Fig. 1~a! presents a period-2 orbit obtained by
usingg520.004, that is applied to all the variables, while
period-1 or -4 orbits can be stabilized in the same way.
Another possibility is to apply perturbations on only one or
two of the variables. Purely empirical evidence shows that
the most effective possibility in this case is to act only on
y, and, thus, Fig. 1~b! presents a period-4 orbit stabilized by
using gy520.005. It appears that there is no systematic
procedure to determinea priori which variable is the most
effective for this purpose, and analogous remarks for other
models studied in the present work are based just on numeri-
cal evidence. It is possible to stabilize the system in a peri-
odic behavior by usingg.0 values in the case that one is
below a periodic window. Thus, forc55.0 one is near a
period-3 window and perturbations withg.0 are able to
stabilize this behavior, as shown in Fig. 1~c! for the case of
g50.002. The robustness of the chaos suppression method
has also been tested with similar models, namely, by consid-
ering two different chemical versions of Ro¨ssler’s model
@48,49#.

B. The Hindmarsh-Rose model of a bursting neuron

The second example that we have chosen is that of the
three-variable continuous model of a bursting neuron intro-
duced by Hindmarsh and Rose in 1985@50#. This study rep-
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resents a generalization of their previous work@51#, based on
the Fitzhugh’s Bonhoeffer-van der Pol model@52#. The main
idea is to have a model that produces action potentials sepa-
rated by long interspike intervals, as found in real neurons,
with the additional feature that the system may exhibit sus-
tained bursting oscillations, i.e., a stable limit cycle instead
of the usual quiescent~or fixed point! behavior. Furthermore,
it can be shown that the model, that can be written in the
form,

ẋ5y2ax31bx21I , ẏ5c2dx22y, ż5r @s~x2x0!2z#
~3!

may exhibit deterministic chaos by adequately varying the
I parameter@53#.

A useful way of characterizing the behavior of the system
is by using time-interval sequences for firing@53#, studied as
a function ofI ~that will be the bifurcation parameter!. If one
plots the time interval between spikesdn versusI , it can be
seen that for increasing values ofI , regular behavior with
period-1, period-2 etc., is observed before chaos settles
down. For still higher values ofI one has periodic behavior
again, this being an example of a period-doubling reversal or
bubble@47#. We have chosen to work atI53.35, inside the
chaotic region. In analogy to the situation considered in Ref.

@39# in the case of a model also exhibiting a period-doubling
reversal behavior, one may obtain periodic behavior using
either g,0 or g.0, where in the first case the observed
behavior is related to the periodic behavior of the original
system forI.3.35, while in the second case it is related to
the behavior of the system forI,3.35.

Thus Fig. 2~a! contains a stabilized period-3 orbit ob-
tained withg50.004. Period-1, -2, and -4 orbits can be also
stabilized withg.0 values. In turn, Fig. 2~b! shows a sta-
bilized period-2 orbit obtained withg520.000 2. Again,
one can obtain the whole sequence with suitable values of
g,0. In brief, for systems presenting a remerging tree, like
the three-variable autocatalator model@54# considered in
Ref. @39# and the present model, one can stabilize periodic
orbits of the system at both sides of the chaotic region in the
bifurcation diagram by using eitherg,0 or g.0.

C. Proto-Lorenz and Lorenz models

In the original presentation@39# of the chaos suppression
method ~1!, an application to the Lorenz model@3# was
given. The result was that withg,0 the method is able to
stabilize one of the two fixed points from which the strange
attractor emerges through the appearance of a homoclinic
orbit, while which of the fixed points is obtained will depend
on the initial conditions. In addition, the method is not able
to stabilize purely periodic behavior in theusualchaotic re-
gion defined by the parameterss510, R528, andb58/3
@3#. The explanation for this result is that in this system there
is not any nearby region in parameter space exhibiting peri-
odic behavior, and, thus, the method~1! cannot stabilize this
behavior.

Now we shall consider the so-called Proto-Lorenz model
@55#, obtained by transforming the original Lorenz flow, and

FIG. 1. Chaos suppression in Ro¨ssler’s model,~2! and Ref.@45#,
by fixing the parametersa5b50.2, being the time step for the
integration Dt50.002 and the interval between kicks in~1!
t5100Dt50.2 in all cases:~a! c54.6 andgx5gy5gz520.004
~the system exhibits period-2 behavior!; ~b! c54.6 and
gx5gz50.0, gy520.005~the system exhibits period-4 behavior!;
~c! c55.0, gx5gy5gz50.002 ~the system exhibits period-3 be-
havior!.

FIG. 2. Chaos suppression in the model of a bursting neuron due
to Hindmarsh and Rose~3!, and Ref.@50#, where the parameters
take the valuesa51.0, b53.0, c51.0, s54.0, d55.0, r50.006,
x0521.6, andI53.35 @53#, while the time step for integration is
Dt50.02 and in~1! t5100Dt52: ~a! gx5gy5gz50.004 and one
has a period-3 behavior;~b! gx5gy5gz520.004 and one has a
period-1 behavior.

54 201CHAOS SUPPRESSION IN FLOWS USING PROPORTIONAL . . .



where the strange attractor origins from a homoclinic orbit.
The model can be written in the form,

ẋ5@2sx31~2s1r2z!x2y1~s22!xy2

2~r2z!y3#/2~x21y2!,

ẏ5@~r2z!x31~s22!x2y1~22s2r1z!xy2

2sy3#/2~x21y2!,
~4!

ż52x3y22xy32bz.

By working with the parameterss510, b58/3, andr528
this system exhibits chaotic behavior, and depending on the
initial conditions any of the four unstable fixed points can be
stabilized withg,0 values, exactly in the same way as in
the original Lorenz model. Thus in Fig. 3 one of the unstable
fixed points of the system is stabilized withg520.01. It is
not possible to obtain this behavior by acting only on a sub-
set of the system variables.

In this parameter region neither the original Lorenz model
nor ~4! exhibit a period-doubling route to chaos. Neverthe-
less, for the original Lorenz model,

ẋ5s~y2x!, ẏ5Rx2y2xz, ż5xy2bz, ~5!

it is possible to find regions of chaotic behavior near a
period-doubling sequence and with periodic windows. In
particular, we have fixeds andb at the valuess51.43 and
b50.28, while R may take values in the range
100,R,160, these parameters appearing in the study of
instabilities and chaos in laser dynamics@56#. In such a case,
a strange attractor emerges from a fixed point atR;40. By
increasingR, periodic windows can be observed, for in-
stance atR;110, and at higher values ofR a reverse period-
doubling transition to chaos is observed. Thus, we have cho-
sen to work atR5130, a region in which the system exhibits
chaotic behavior sandwiched between periodic windows and
a period-doubling sequence, with the aim of stabilizing this
behavior through the use of the described method above~1!.

In this case, the stabilization method works only if one
applies perturbations on variablez. Thus Fig. 4~a! contains a
stabilized period-1 orbit, that looks similar to the behavior
obtained forR;160. For the range of parameters considered
by Lorenz, and also for the original model or the Proto-

Lorenz model, it is possible to show that one can also stabi-
lize the fixed point behavior by again acting only onz @see
Fig. 4~b!#. The evidence for the fact that one gets the desired
behavior by acting only on one of the variables is purely
numerical, and, again, it is not possible to establish this fact
a priori. Similar results can also be obtained for other sys-
tems that are related to the Lorenz model@48,49,57#.

D. The Willamowski-Rössler model

The emergence of genuine low-dimensional chaos from a
chemical mechanism, and not from hydrodynamical mixing
effects, has long been under debate@58#. The use of simple
models that are realistic from the chemical point of view,
i.e., models in which the dynamical evolution equations can
be written as a polynomial with at most quadratic terms, may
shed light on this phenomenon. The Willamowski-Ro¨ssler
@59# is probably the first model suggested in the literature
that exhibits these features of realism from the chemical
point of view. The model can be mathematically defined in
the form,

ẋ5k1x2k21x
22k2xy1k2y

22k4xz1k4 ,

ẏ5k2xy2k22y
22k3y1k23 , ~6!

ż52k4xz1k241k5z2k25z
2,

and it can be shown that this three-species chemical network
exhibits complex oscillations for certain values of the param-
eters@60#.

The dynamics of the Willamowski-Ro¨ssler model, with
the parameters k1530.0, k2150.025, k250.1,
k2250.000 01, k3510.0, k2350.01, k2450.01,
k5516.5, k2550.05 held fixed, and beingk4 the corre-
sponding bifurcation parameter, can be described as follows

FIG. 3. Chaos suppression in the Proto-Lorenz system~4!, and
Ref. @55#, for the parameter valuess510.0, b58/3, r528.0, and
with a time step for integration ofDt50.002, while the parameters
of ~1! aregx5gy5gz520.01 andt520Dt50.04, being the be-
havior of the system of fixed point type.

FIG. 4. Chaos suppression for the Lorenz model~5!, and Ref.
@3#, with a set of parameters suitable for the study of laser instabili-
ties:s51.43, b50.280, andR5130, with a time step for integra-
tion of Dt50.002, while in~1! t5100Dt50.2: ~a! gx5gy50.0,
gz520.01, being the final behavior a period-1 orbit;~b!
gx5gy50.0;gz50.01, yielding a more complicated periodic orbit.
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@60#. At k450.05 one has a limit-cycle~period-1! behavior,
that at k450.095 becomes period 2, following a period-
doubling route to chaos~the model exhibits chaos from
k4;0.097). For still higher values ofk4 the system exhibits
a period-doubling reversal@47#, and one has a stable limit
cycle for k450.13, and finally a stable focus fromk450.2.

This system has been studied in the chaotic region,
namely, by choosingk450.1. By applying the above de-
scribed chaos suppression method~1!, it has been found that
for g,0 values it is possible to stabilize orbits related with
the original system fork4,0.1. Thus in Fig. 5~a! we present
a stabilized period-1 orbit withg520.01 and t50.04,
while period-2, period-4. and period-8 orbits are easily sta-
bilized for otherg,0 values. It is also possible to stabilize
periodic orbits by usingg.0 values, but not if the pulses are
applied simultaneously to all the variables. Thus Fig. 5~b!
presents a stabilized period-2 orbit obtained by using
gx50.04.

For the reported values of the parameters, the system pre-
sents a set of fixed points, of which two of them are stable,
while the rest are unstable. The first stable fixed point
has the coordinatesxs53.333831024, ys51.000031024,
zs532.999@61#, and by using adequate parameters in~1! it is
possible to induce a transition in the system to this behavior,

as can be seen from Fig. 5~b!, where the perturbations have
been applied only toy (gy50.04). It has not been possible
to stabilize any of the other fixed points, stable or unstable,
reported in Ref.@61#. The stabilization of fixed point behav-
ior occurs in this case through a transition from the strange
attractor to the coexisting attractor, and bears no relationship
to the stabilization of unstable fixed points reported for the
Lorenz system in Sec. III C. In the case of the Willamowski-
Rössler the role of~1! is analogous to the presence of noise
in the system@61#, while for the Lorenz system the method is
effectively inducing a change in the parameters of the sys-
tem, that leads it to a region in which the unstable fixed point
becomes stable.

E. Duffing oscillator

Duffing’s model is a very good example@62# of how de-
terministic chaos appears in many mechanical systems that
may be described as oscillators deriving from a nonlinear
potential. In this case the potential is quartic~has two wells!,
and damping and forcing terms are present. The system can
be written in the form,

ẍ1cẋ1x32x5Fcos~vt !. ~7!

It is also possible to write this model as a system of first-
order differential equations by using the changesẋ5v and
z5vt, in terms of the three state variables (x,v,z). By fix-
ing the damping constant and driving frequency at the values
c50.5 andv51.0, respectively, one obtains a route to chaos
as a function ofF. In the absence of external forcing
(F50), the system has two stable fixed points atx561,
while when some forcing is applied the system oscillates
with a frequency equal to the external frequencyv around
these fixed points. In the region 0.309,F,0.321 the system
exhibits multistability, and beyond the upper limit a period-
doubling route to chaos starts, that has its accumulation point
at F50.3586. ForF,0.386 the system remains trapped at
one of the wells, while at this value ofF an attractor-
merging crisis@15# occurs, and the strange attractor encom-
passes both wells.

The behavior observed for this system is very similar to
that found for the case of the Holmes map, as reported in
Ref. @42~b!# ~indeed the Holmes map@63# was designed to be
an approximation to the Poincare´ map of the Duffing sys-
tem!. In this system one may apply~1! independently to any
of the two variablesx or ẋ, and Figs. 6~a! and ~b! contain
two examples in which periodic behavior is stabilized by
acting on a single variable at a time.

F. Some remarks

Now we shall try to obtain some preliminary conclusions
from the results obtained after the application of the chaos
suppression method to the models studied in Sec. III. We
hope that these caveats may be of help to potential users of
the method. It is important to bear in mind that most of the
conclusions mentioned in the present section emerge from
empirical observations for the models studied in this work
about the way in which the method~1! appears to work. It
could be that one could find some counterexample in which
some of these conclusions are violated. One of the observed

FIG. 5. Chaos suppression for the Willamowski-Ro¨ssler model
~6!, and Ref. @59#, with the parametersk1530.0, k2150.25,
k251.0, k2250.0001, k3510.0, k2350.001, k451.0,
k2450.001, k5516.5, k2550.5 @60# being the time step for the
integration Dt50.0002 and t5200Dt50.04 in ~1!: ~a!
gx5gy5gz520.02 ~that yields period-1 behavior!; ~b!
gy5gz50.0, gx50.04 ~that yields period-2 behavior!; ~c!
gx5gz50.0, gy50.04 ~that yields a transition to a stable fixed
point coexisting with the strange attractor!.
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features is that in the caseg,0 the method~1! works by
stabilizing certain periodic orbits that coexist with the
strange attractor. These unstable periodic orbits are similar,
although not identical, to stable orbits corresponding to
nearby regions of the system in parameter space for which
the system exhibits a regular behavior. Instead, in the case
that g.0, the method apparently works in a safe way only
when one has a bubble~or remerging tree!. In such a case,
the application of bothg,0 and g.0 has the effect of
stabilizing different regular behaviors related to one of the
two periodic regions that are to the left and to the right of the
bubble in the bifurcation diagram. The use ofg.0 in other
cases typically yields transitions to an attractor at infinity~an
explosion! or other nonuseful behaviors.

One could also wonder whether one should manipulate all
the variables of the system, or rather a subset of them. By
perturbing simultaneously all the variables of the system one
typically obtains a regular behavior that is related to a be-
havior of the unperturbed system obtained by using different,
but close, values of a system parameter. Instead, the cases in
which perturbing a subset of the system variables one is able
to stabilize different behaviors should be considered as ex-
otic, in the sense that one obtains such behavior just for very
specific systems~with the exception of the Lorenz model, as
discussed in Sec. III C!. Thus, in the case of the
Willamowski-Rössler model~see Sec. III D!, if one applies
perturbations such thatgy,0, whilegx5gz50, the effect is
to induce a transition from the strange attractor to a coexist-
ing fixed point. This is due to the particular structure of this
model in phase space, as the strange attractor passes quite
close to the origin in thex-y phase plane, while the coexist-
ing stable fixed point has itsy coordinate very close to zero,
and, thus, the application ofgy,0 has the effect of inducing
this transition. However, one should not expect to obtain
analogous results for other systems by applying this kind of
specific perturbations to the system variables. Other ex-
amples in which the different variables may indeed have dif-

ferent physical interpretations, as is the case of the Duffing
model of Sec. III E, offer another illustration of the applica-
tion of perturbations to a subset of the system variables.

Another interesting feature of the present chaos suppres-
sion method is that, although formally the method works by
introducing a new parameterg in the system and then mak-
ing fixed, static changes to that parameter, it effectively
achieves some kind of dynamical exploration of the param-
eter space of the system. This can be better illustrated for the
case of the Hindmarsh-Rose neuron model~see Sec. III B!.
The model is a function of eight parameters, and it is difficult
to knowa priori which is the most relevant parameter to be
varied in order to obtain the whole bifurcation tree of the
system. Indeed, by varying some of the parameters one gets
a quite monotonic~and boring! behavior, completely unre-
lated to the sought transition between chaotic and periodic
behaviors. In some sense, one needs to know a lot about the
system, like which is the right parameter to be varied, before
applying ordinary chaos control or chaos suppression meth-
ods on a system parameter. Instead, what we have observed
for the systems considered in the present work is that if one
uses~1! we have observed that, althoughg is nothing else
than a system parameter, one seems to be able to obtain the
whole bifurcation tree of the system by varying it. This fact
of finding the right control parameteris achieved without
any previous knowledge about the system under study. These
results should be considered as empirical findings for a num-
ber of systems, and it could be that other conclusions are
obtained for other unexplored models.

It is in this context that the idea ofdynamical exploration
of the system should be understood, which may be a positive
feature of the method when applied to situations for which a
detailed modelization is not available, as is the usual situa-
tion when dealing with biological systems. At the present
moment we cannot offer a theoretical explanation of whyg
is so successful in achieving this exploration of the bifurca-
tion tree, and we can only say that this is the behavior that is
actually observed. The values ofg that have been used to
suppress chaos are typically in the order of, at most, a few
percent, as is the case of the present example. This illustrates
the fact that the method only introduces small perturbations
to the state of the system. In this sense, the method belongs
to thenonlinear chaos controlclass of methods, and not to
the class of methods based on a more linear way of reason-
ing, and that work by applying stronger perturbations to the
state of the system.

IV. RELATIONSHIPS BETWEEN THE PARAMETERS
OF THE CHAOS SUPPRESSION METHOD

In this section we shall try to analyze some generic fea-
tures of the chaos suppression method through proportional
changes in the system variables introduced in Sec. II, with
the basic aim~that, however, is not always fulfilled! of ob-
taining somea priori information about the values ofg and
t to be used. In order to achieve this goal, it would be useful
to have data for a number of systems, with the aim of ob-
taining some general trend. Thus we have performed a sys-
tematic study of the set of models recently introduced by
Sprott @46#. This author has presented 19 models, supposed
to be the simplest examples exhibiting chaotic behavior, with

FIG. 6. Chaos suppression for the Duffing oscillator~7! with the
parametersc50.5, F50.42, v51.0 @62#, being the time step for
the integrationDt50.002 andt5100Dt50.2 in ~1!: ~a! gx50,
gv520.04 and one gets period-1 behavior;~b! gx520.03,
gv50, that yields period-2 behavior.
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either five terms and two nonlinearities or six terms and one
nonlinearity. In this work we shall not consider the first
model given by Sprott~system A!, because it is conservative,
and we are only interested on dissipative systems.

In order to find quantitative relationships, it will be useful
to consider the Lyapunov exponents, characterizing the
growth of perturbations in the unstable direction of the at-
tractor. Sprott has systematically reported the Lyapunov ex-
ponent for these systems@46#. Thus, if one makes a small
perturbationdx(0) on the attractor, its time evolution will be
dx(t);dx(0)exp(lt), wherel is the highest Lyapunov ex-
ponent of theN-dimensional system under study, being this
relationship only approximate. If one considers the situation
in which the time scale in which the changes in the variables
are applied, i.e.,t in ~1!, is faster than the time scale fixed by
the inverse of the Lyapunov exponent, i.e.,t!tL51/l, then
one can linearize the previous expression to obtain,

dx~t!'dx~0!~11lt!. ~8!

If one now linearizesdx(t) for a time 2t, and if 2t!tL holds,
the result isdx(2t);dx(0)(112lt), and this implies that in
this linear regime two successive applications of the method
with g and a time stept are equivalent to a single applica-
tion of ~1! with time step 2t and doubled intensity 2g. This is
equivalent to the previous empirical finding@39# that for a
given systemg and t are related one to each other in the
form

g/t5C, ~9!

C being a constant. This relationship has been shown to be
fulfilled through numerical experimentation, provided that
t is not too large.

Another possibility that has been considered is that the
proportional perturbations are applied to the system variables
in the form of a square pulse, that has a finite duration, in-
stead of doing it instantaneously. In the practical implemen-
tation of the method this would imply that the pulse elapses
a finite number of integration steps. The results so far ob-
tained for some of the examples considered in Sec. III indi-
cate that the same stabilized orbits can be obtained by the
appropriate tuning of the parameters. Moreover, a more
quantitative relationship has been discovered between the
duration of the square pulse, sayjDt, and the parametersg
andt. If, in the spirit of ~9!, one fixest, then the relation-
ship between theg for the original method, wherej51, and
its modified value with pulses of durationj time steps, say
g j is found to be as simple as,

g j5g/ j . ~10!

This implies that through the application of the more realistic
finite pulses one may reduce the relative impact of the per-
turbations making a smaller deformation on the system, al-
though the totalamountof the system variables that is in-
jected or retired is constant.

One of the most rewarding aspects of deterministic chaos
is the observed universality@2# in the way in which systems
with completely different descriptions at the microscopic
level perform the transition from regular to chaotic behavior.
For the case of systems in the universality class of the logis-

tic equation, i.e., of systems that exhibit a quadratic one-
dimensional return map, and, thus, a period-doubling route to
chaos, Huberman and Rudnick@64,65# have introduced the
following relationship,

l5l0~p2pc!
a, ~11!

with a5 ln2/lnd50.4498, and beingd54.52 . . . Feigen-
baum’s universal constant. In this relationship the highest
Lyapunov exponentl plays the role of an order~or, in this
case, disorder! parameter of the system. Due to the existence
of periodic windows in the midst of chaos, this relationship
should be valid just for the envelope in which all the merg-
ings from 2n bands into 2n21 bands occur inside the chaotic
region.

Having a number of chaotic systems of the same type, we
have chosen to look for some relationship between the
Lyapunov exponent~disorder parameter! and just one char-
acteristic parameter of the chaos suppression method~1! ~as
we have already shown thatg andt are related!. The chaos
suppression method~1! works by stabilizing a given periodic
orbit, but not in a smooth way due to the presence of instan-
taneous kicks to the variables. However, one can consider
that the stabilized periodic orbitshadowsa smooth periodic
orbit of the system@39#. The orbits stabilized by the chaos
suppression method~1! are a discrete approximation to con-
tinuous orbits. Taking into account relationship~9!, one
could replace a given realization of the chaos suppression
method, that have given values forg and t5 jDt, with an-
other one in which the perturbations are applied at each in-
tegration step, and havingg85g/ j . In this case the stabilized
orbit would coincide with the shadow orbit. Of course, this
discussion is only qualitative, as it is known that in some
inherently unstable situations a shadow orbit cannot be de-
fined @66#. A different situation is that in which the kicks are
large, beingt probably also large, where~9! will not hold. In
this case, the stabilized orbit would be clearly noncontinu-
ous, and the relationship with the shadow orbit will be less
clear. In such a case it is not even clear whether one can
effectively stabilize a periodic orbit, even for structurally
stable problems.

The idea now is that if one fixes the time step for the
integration and the intensity of the perturbations, that will be
the same for all the variables, then the interval between
pulses should be related to the highest Lyapunov exponent of
the system, that is the disorder parameter. This can be ex-
plained qualitatively as follows. If the highest Lyapunov ex-
ponent were zero, then no perturbations should be applied as
the system would stay all the time in the periodic orbit, that
would coincide with theshadoworbit. However, small posi-
tive Lyapunov exponents imply that one needs tocorrect the
orbit from time to time in order to keep it close to the
shadow orbit. In principle, the higher the Lyapunov exponent
is, the smaller the interval between kicks should be.

We shall fix the intensity of the perturbation, that will be
equal for all the variables, to take the valueg520.02
(2 % of perturbation!, while the time step of the integration
method takes the valueDt50.01, the one considered by
Sprott in his study@46#. Then, the maximum possible value
for the interval between perturbations for which a period-1
orbit is obtained will be recorded, with the aim of correlating
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it with the the highest Lyapunov exponent~see Table I!. The
idea is to obtain a relationship that might allow us to predict
the parameter to be applied in the chaos suppression method
~1! for the unexplored systems from the knowledge of the
highest Lyapunov exponent. Figure 7 shows three examples
of the periodic orbits that are stabilized in these conditions
for three of these systems, namely, systems D, I, and O.

The sought relationship between the highest Lyapunov
exponentl and the time interval between pulses to achieve a
period-1 orbitt1 /Dt has been obtained numerically by plot-
ting the logarithm of the inverse of the Lyapunov exponent
t151/l versus the logarithm oft1 /Dt ~see Fig. 8 and Table
I!. Not all the systems studied in Ref.@46# have been con-
sidered in this study, as system A is conservative, systems B
and C do not belong to the universality class of systems with
a period-doubling route~these systems, that exhibit a double-
scroll attractor, are in the same universality class as the Lo-
renz system!. System E can only be stabilized by using
g.0 values, and system R does not appear to yield a
period-1 orbit~see Ref.@67# for the definition of the Sprott
systems used in the present work!. The result is a good fit to
a straight line with a slope close to 1, that implies a straight
line relationship betweent1 and t1 /Dt, for eight of the
systems, while the others depart somehow from this behavior
~see Fig. 8!.

One may wonder why the observed relationship is linear
and does not have the form of~11!. The fact that one finds a
linear relationship betweent1 andt1 /Dt, while t1 exhibits
a relationship of the form~11! implies an analogous relation-
ship for t1 /Dt, having exactly the same exponenta. This
has been verified numerically for the systems considered in
the present section. Another question is why some systems
appear to fulfill so well this relationship, while the others
significatively deviate from this behavior. One problem is
that a single item of information is available for these sys-
tems, and, thus, neither the control parameter that regulates
the route to chaos, nor the distance to the accumulation point

of Feigenbaum’s route are known. As the Ro¨ssler system
~see Sec. III A! is of the same type of the set of Sprott sys-
tems, we have decided to try to shed some light on these
issues, as there exists a study of the variation of the highest
Lyapunov exponent as a function ofc @68#. If one considers
several values ofc in the range 4.225.0, one indeed obtains
a relationship of the form~11!. By inserting these values as
additional points in the previous fit, it can be seen that some
of them are in agreement with the straight line fit, while
some others fall somehow apart.

Moreover, this behavior is not erratic, as the parameter
values that are close to the transition point do indeed yield a
good fit, while some of the points that are farther from this
transition point do not fit well. The key point is not just the
distance from the transition, but rather whether the point un-
der consideration is inside or near a periodic window in the
chaotic regime. Huberman and Rudnick@64# found a rela-
tionship valid for the envelope past the transition point from
periodic behavior to chaos. However, the chaotic region is
interspersed with many periodic windows, and points in
these regions will not obey the expected relationship be-
tween the Lyapunov exponent and their distance to the onset
of chaos. Not much is known about the relative distance of
the Sprott systems to the onset of chaos, and whether they

TABLE I. Largest Lyapunov exponentl1 , characteristic time
t151/l1 , and values oft1 /Dt, the maximum possible number of
the interval between pulses, that are needed to stabilize period-1
orbits in selected Sprott chaotic models@46# ~see@67# for the evo-
lution equations! by usinggX5gY5gZ520.02 andDt50.01 ~see
Sec. IV!.

Case l1 t1 t1 /Dt

D 0.103 9.7 17
F 0.117 8.5 14
G 0.034 29.4 26
H 0.117 8.5 15
I 0.012 83.3 138
J 0.076 13.1 46
K 0.038 26.3 46
L 0.061 16.4 24
M 0.044 22.7 36
N 0.076 13.1 50
O 0.049 20.4 35
P 0.087 11.5 26
Q 0.109 9.2 26
S 0.188 5.3 26

FIG. 7. Chaos suppression for some selected examples of the set
of systems introduced by Sprott@46# ~in all cases the parameters
employed are those reported by Sprott, including the time step for
the integration, that isDt50.01). By fixing gx5gy5gz520.02
the maximum value oft, calledt1 , such that one obtains period-
1 behavior is reported~given in units of the time step!: ~a! model D
with t/Dt517; ~b! model I with t/Dt5138; ~c! model O with
t/Dt535. Notice that these values are a part of Table I and of
Fig. 8.
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are close or not to a periodic window. Thus, finding quanti-
tative relationships may be useful, but cannot be considered
a universal panacea for chaotic systems in all possible pa-
rameter regimes.

To conclude this section, and taking Sprott models@46# as
a useful example, it is perhaps interesting to mention one of
the potential applications of the present method. When one
studies for the first time a different chaotic model, knowing
nothing about the behavior of the system when some param-
eter is varied, routes to chaos, etc., the chaos suppression
algorithm suggested in this work may allow one to perform a
useful first approach to the system. Thus, the method would
afford some kind of exploration of the system through its
dynamical, rather than by using thestaticparameters. In this
sense, it would allow the exploration of the most typical
behavior of the system~see also Sec. III F!.

V. DISCUSSION AND CONCLUDING REMARKS

In the present work the recently suggested chaos suppres-
sion method@39# through proportional changes in the system
variables~1!, or, equivalently, minute kicks in the system
variables that are proportional to their current value, has been
applied to different kinds of systems and analyzed in some
detail. Some of the conclusions obtained from this work, but
also from other investigations from parallel studies, will now
be summarized. First of all, what a potential user of the
present method will probably wish to know is the answer to
questions like the conditions under which the method will
work or not, and which variables should be manipulated and
in which form. The key point is that from the empirical evi-
dence it appears that the method works by stabilizing peri-
odic orbits or fixed points that are close, although not neces-
sarily identical, to invariant sets for the unperturbed
dynamical system, although for slightly different values of
the parameters~see, e.g.,@42~b!#!. These orbits or fixed
points become unstable when the system performs the tran-

sition to chaotic behavior. Thus, the main conclusion is that
by applying proportional pulses simultaneously to all the
system variables, withg,0 and not too large values ofg
andt, one is able to stabilize some regular state of the sys-
tem. This behavior is related to that exhibited by the original
system in a nearby region in parameter space for which the
system is regular. This should be the general recipe to be
applied in a generic situation. Which behavior will turn out
to be depends on the precise route to chaos of the system, as,
in principle, the method seems not able to create behaviors
that are not present in an unstable form in the system.

Other possible uses of the method should be regarded as
more or lessexotic, and they have been presented here only
to illustrate other features of the method. Thus one may won-
der which should be the sign of the perturbationg to be
applied in ~1!. One usually employs negative values forg,
that take the system to the prechaotic behavior, but in some
circumstances, like the case of the systems exhibiting a re-
merging tree~or bubble! @47#, the application of both posi-
tive and negative perturbations works in the aim of stabiliz-
ing the periodic behavior. Another point refers to the
different performance obtained by applying perturbations to
all the variables versus the application of pulses to a subset
of these. It appears that, with the conspicuous exception of
the Lorenz model~see Sec. III C!, in almost all cases the
application of changes to all the variables is more effective
than the use of a subset of them.

In some cases, one only needs to apply stronger perturba-
tions to a smaller number of variables, while in a few cases
the method is no longer able to stabilize a periodic orbit.
Another empirical remark is that the double-scroll strange
attractors~like Lorenz model! are more difficult to stabilize
than single-scroll strange attractors~like Rössler’s model!. A
qualitative explanation for this fact might be as follows.
Double-scroll strange attractors have a region between the
two bands with a very strong sensitivity to initial conditions.
Thus, one needs to perturb more the system in order that it
becomes periodic, while the Lyapunov exponent will be
higher, and all the arguments developed in Sec. IV should
also apply. These are different manifestations of the fact that
the single-scroll systems belong to the universality class of
the logistic equation, while many double-scroll systems be-
long to that of the tent map~although not always!.

The present proportional method appears to be superior to
the alternative@43# in which one applies additive perturba-
tions on the system variables. This remark should be under-
stood in the following practical sense. The proportional
method considered in the present work~1! is successful in
suppressing chaos in a number of chaotic systems. Instead,
the application of the additive perturbations is able to yield
analogous results in many cases, while it fails for a number
of examples. The opposite situation has not been found to
hold in any case, i.e., it has not been found that the propor-
tional method fails to suppress chaos for a system for which
the additive method is able to achieve that goal. The expla-
nation for the superior performance of the proportional
method is probably that a chaotic system usually spans a
substantial range of values in phase space, and the applica-
tion of fixed, compromise, and additive perturbations on the
system variables is less efficient than the use of proportional
perturbations.

FIG. 8. Graphical representation of the values of Table I, to
show the linear relationship lnt1 versus ln(t/Dt), beingt1 the in-
verse of the highest Lyapunov exponentt151/l and t/Dt the
maximum number of integration steps that are necessary to stabilize
a period-1 orbit withg520.02 andDt50.01. A straight line with
parameters lnt1520.52111.004lnt can be fitted very well to the
eight systems represented with filled circles.
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The method studied in the present work differs from the
usual chaos control and chaos suppression methods@6,8# in
that it does not focus on some accessible parameter~static! of
the system, but instead has as its target the system variables
~dynamical!. For many physical systems locating a suitable
system parameter is not difficult, and indeed it may be more
amenable to manipulation than the system variables them-
selves~as is the case of lasers@56#, where the system vari-
ables represent things like polarization, which is difficult to
operate!. Instead, if one considers chemical, biological, or
other systems, locating the suitable parameters may be more
difficult ~in some cases one may even be completely ignorant
about the evolution laws of the system!. However, in these
cases one can always identify at least some of the relevant
variables of the system, with the meaning of populations, and
alter them with the aim of controlling the behavior of the
system and/or dynamically exploring other behaviors of the
system. The meaning ofdynamical explorationin this con-
text would be as a variant of the usualstatic exploration
carried out by pulling the knob on some parameter.

One example of the feasibility of this dynamical explora-
tion is the Hindmarsh-Rose model considered in Sec. III B.
This system~3! has eight different parameters, and, thus, a
more or less systematic exploration of the behavior of the
system would imply the consideration of variations in the
eight-dimensional parameter space, which would be quite
cumbersome. Instead, it is found that by applying propor-
tional perturbations to the system variables through~1!, and
making equal perturbations byg to all the variables, one may
explore all the dynamical behaviors of the system with just a
single parameter. The same can be said about the systems
introduced by Sprott@46#, that were used in Sec. IV. By
choosing arbitrary values for the parameters and varyingg,
one may have a first acquaintance with the behavior of the
system, including the qualitative shape of the strange attrac-
tor, routes to chaos, alternative behaviors, etc. This idea of
dynamical exploration can be useful regarding the role of the
initial conditions, not just the system parameters. If one con-
siders the Willamowski-Ro¨ssler model as an example~see
Sec. III D!, this system has two stable fixed points that co-
exist with the strange attractor. The point is that one of the
fixed points appears to be globally more stable than the

strange attractor, but its attraction basin is very small. This
implies that it is very difficult that one becomes aware of the
existence of the fixed point and its possible practical rel-
evance if one works strictly at the deterministic level. How-
ever, if some noise is introduced into the system, there will
be a noise-induced transition~see, e.g.,@61#!. As the chaos
suppression method considered in this work is also able to
induce this transition, one may consider it as a way of dy-
namically exploring phase space by applying kicks to the
system variables, while one stays at the deterministic level of
description.

Another field of interest in which it is foreseen that the
present method might be of interest might be in the case of
the extended systems exhibiting phenomena like that of spa-
tiotemporal chaos, etc. If one has a discrete system, e.g., a
coupled map lattice@69#, the idea would be to apply pertur-
bations to one of the nodes, that are diffusively coupled to
the rest of the network, and then the regularization would
extend to the rest of the network. A preliminary application
of the present method along these lines has already been
carried out in Ref.@70#.

Chaotic systems have been usually considered as danger-
ous. While the use of chaos control techniques may be very
helpful in keeping track of these situations, it appears that the
common wisdom in medicine that deterministic chaos might
be behind many diseases, like heart attacks, etc., could be
unjustified. Recent evidence@71# indicates that chaos is
healthy, because a living being lives in an adapting environ-
ment, and the repertoire of periodic behavior that is con-
tained in a strange attractor makes the system more adaptable
under external influences. Some theorists@72# even hold the
view that maximum fitness is linked to a state that is in the
boundary between order and chaos. Stabilized periodic be-
havior through a certain procedure might fulfill this require-
ment, and could be behind the way in which living beings,
ecosystems, etc., achieve this productive state.
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